[1] href='https://www.ncbi.nlm.nih.gov/pubmed/?term=Mi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27762336'>Mi S,Du Z,Xu Y,Wu Z,Qian X,Zhang M,Sun W. Microfluidic co-culture system forcancer migratoryanalysisand anti-metastaticdrugsscreening. Sci Rep.2016 , 20;6:35544. doi: 10.1038/srep35544.
[2] Xujie Liu, Tarek A Elkhooly, Qianli Huang, Wei He, Qiang Cai, Qingling Feng*, and Shengli Mi*. A Facile Way to Prepare Mesoporous Spherical Calcites Controlled by Chondroitin Sulfate for Shape and Carboxymethyl Chitosan for Siz. CrystEngComm, 2016, 00, 1-5.
[3] Xujie Liu, Tarek A. Elkhooly, Ranran Zhang, Qingling Feng*, Akash Bachhukad, Krasimir Vasilevd, Qiang Cai, Shengli Mi*. Selective deposition of CaCO3 on chemical gradient surface generated by plasma polymerization and its e?ect on cell adhesion. Materials Letters 186 (2017) 90–93.
[4] Liu X,Yu B,Huang Q,Liu R,Feng Q,Caiabd Q,Mi S*. InvitroBMP -2 peptide release from thiolatedchitosanbasedhydrogel. Int J Biol Macromol.2016 ,93 (16)314-321.
[5] Bin Kong and Shengli Mi*. Electrospun Scaffolds for Corneal Tissue Engineering: A Review. Materials 2016, 9, 614; doi:10.3390/ma9080614.
[6] Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S*. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific Report. 2016 19; 6:24474. doi: 10.1038/srep24474.
[7] Liu XN,Zhu XP,Wu J,Wu ZJ,Yin Y,Xiao XH,Su X,Kong B,Pan SY,Yang H,Cheng Y,An N1,Mi SL*. Acellularostrichcorneal stromaused as scaffold for construction of tissue-engineered cornea.Int J Ophthalmol.2016 Mar 18;9 (3):325-31.
[8] Mi S*, Kong B, Wu Z, Sun W, Xu Y, Su X. A novel electrospinning setup for the fabrication of thickness-controllable 3D scaffolds with an ordered nanofibrous structure. Materials Letters 160:343-346,2015.
[9] Xiao X,Pan S,Liu X,Zhu X,Connon CJ,Wu J,Mi S*. In vivo study of the biocompatibility of a novel compressed collagen hydrogel scaffold for artificial corneas. Journal of Biomedical Materials Research: Part A 102 (6):1782-1787,2014.
[10] Liu C,Li Y,Zhang L,Mi S,Xu Y,Sun W. Development of a novel low temperature deposition machine using screw extrusion to fabricate PLGA scaffolds. Proceedings of IMechE, Part H: Journal of Engineering in Medicine. 2014, 228(6):593-606.
[11] Liu XN, An N, Wu J, Xu K, Zhu XP, Mi S.* Corneal ulcer caused by nocardia brasiliensis in a patient with diabetes. Int J Ophthalmology 7(2):381-383,2014.
[12] Wright B,Mi S,Connon CJ. Towards the use of hydrogels in the treatment of limbal stem cell deficiency. Drug Discov Today,18(1-2):79-86,2013.(co-first author).
[13] Mi S, David A, Chowdhury B,Jones R, Hamley I, Squires A and Connon CJ. Tissue engineering a fetal membrane. Tissue Engineering Part A,18 (3-4): 373-381,2012.
[14] Mi S, Khutoryanskiy V, Jones R, Zhu X, Hamley I and Connon CJ. Photochemical cross-linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. Journal of Biomedical Materials Research: Part A,99 (1):1-8,2011.
[15] Mi S,Dooley EP,Albon J,Boulton ME,Meek KM,Kamma-Lorger CS. Adhesion of laser in situ keratomileusis–like flaps in the cornea: Effects of crosslinking, stromal fibroblasts, and cytokine treatment. J Cataract Refract Surg, 37(1):166-172,2011.
[16] Mi S, Chen B, Wright B,Connon CJ. Ex Vivo Construction of an Artificial Ocular Surface by Combination of Corneal Limbal Epithelial Cells and a Compressed Collagen Scaffold Containing Keratocytes.Tissue Engineering Part A,16(6): 2091-2100,2010.
[17] Mi S, Chen B, Wright B,Connon CJ. Plastic compression of a collagen gel forms a much improved scaffold for ocular surface tissue engineering over conventional collagen gels.Journal of Biomedical Materials Research: Part A,95(2):447-453,2010.