In Professor Kuang Yu’s lab, we use both electronic structure theories and dynamical simulations to study material systems. We are interested in a variety of phenomena, including condensed matter phase transition, ion/electron/phonon transportation in solids, and chemical reactions in heterogeneous environment such as solid/liquid interface. In collaboration with experimentalists, we study materials with applications to batteries, super capacitors, gas separation & storage, and photoelectronics. Most of these systems are inhomogeneous and complicated in nature, posting great challenges to conventional simulation techniques. To face those challenges, we also develop new simulation tools, by combining different techniquessuitable at different spatial and time scales. Specifically, our current projects include:
- Simulating gas adsorption behavior in molecular crystals and flexible porous materials: using molecular dynamics (MD) as basic tool, we aim to understand the structural changes and the energetics of the material in response to guest molecule intercalations. Then we target to rationally design new materials suitable in different gas separation/storage applications.
- Ab initio and dynamical simulations on batteries & photovoltaics: employing first-principles calculations, we aim to understand the electrical properties of various battery electrodes and photovoltaic materials.
- Quantum embedding theory development: we aim to develop new ab initio methods via combining different levels of electronic structure theories. We expect this method to be more flexible compared to conventional methods, and provides new solutions to difficult electronic structure problems in complicated environment.
- High-accuracy force field development: we aim to design new force fields based on ab initio data, which can accurately describe the interatomic interactions in MD simulation. In particular, we are interested in the application of modern machine learning techniques in dynamical simulations. The new technique will be used to study problems such as heterogeneous interfacial structures, amorphous solid properties, as well as phonon transportations in solid materials.