1. Chen Y*, Li F. Metabolomes evolve faster than metabolic network structures. Proceedings of the National Academy of Sciences 2024, 121, e2400519121.
2. Li F#, *, Chen Y, Gustafsson J, Wang H, Wang Y, Zhang C, Xing X. Genome-scale metabolic models applied for human health and biopharmaceutical engineering. Quantitative Biology. 2023, 11, 363-75.
3. Li F#, *, Chen Y#, Anton M#, et al. GotEnzymes: an extensive database of enzyme parameter predictions. Nucleic Acids Research 2023, D1, D583-D586.
4. Li F#, Yuan L#, Lu H, et al. Deep learning based kcat prediction enables improved enzyme constrained model reconstruction. Nature Catalysis 2022, 5, 662-672.
5. Li F, Chen Y, Qi Q, et al. Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints. Nature Communications 2022, 13, 2969.
6. Li F*. Filling gaps in metabolism using hypothetical reactions. Proceedings of the National Academy of Sciences 2022, 119, e2217400119.
7. Lu H#, Li F#, Yuan L#, et al. Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection. Molecular Systems Biology 2021, 17, e10427.
8. Domenzain I#, Li F#, Kerkhoven EJ, et al. Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species. FEMS Yeast Research 2021, 21, foab002
9. Lu H#, Li F#, Sánchez BJ, et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nature Communications 2019, 10, 3586
10. Li F#, Xie W#, Yuan Q, Luo H, Li P, et al. Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB Express 2018, 8, 106.
# Co-first author, * Corresponding author