高福平

首页  高福平  中文信息
头像

高福平

教授博士生导师

电话:

邮箱:

地址: 清华大学深圳国际研究生院海洋大楼

  • 个人简历
  • 教学
  • 研究领域
  • 研究成果
  • 奖励荣誉
  • 概况

    教育经历

    1997/032001/05,中国科学院力学研究所,工程力学专业,博士

    1994/091997/03,北方交通大学(现北京交通大学),岩土工程专业,硕士

    1990/091994/07,武汉钢铁学院(现武汉科技大学),采矿工程专业,学士


    工作经历

    2025/08—至今,清华大学深圳国际研究生院,教授

    2009/082025/07,中国科学院力学研究所,研究员

    2003/122009/08,中国科学院力学研究所,副研究员

    2003/032003/12,中国科学院力学研究所,助理研究员

    2002/042002/12,西澳大利亚大学,博士后

    2001/102002/04,澳大利亚格里菲斯大学,博士后

    2000/06—2000/11,香港科技大学,研究助理


    学术兼职

    [1] 国际海洋与极地工程学会ISOPE,技术委员会委员(TPC Member

    [2] 国际土力学与岩土工程学会ISSMGE,海洋岩土工程技术委员会(TC-209: Offshore Geotechnics)委员

    [3] 中国力学学会,岩土力学专业委员会副主任

    [4] 中国土木工程学会,土力学及岩土工程分会理事

    [5] 中国海洋学会,海洋工程分会理事

    [6] 国际期刊《Ocean Engineering》副主编

    [7] 国际期刊《Maritime Engineering》副主编

    [8] 期刊编委:《Journal of Marine Science and Engineering》、《China Ocean Engineering》、《Journal of Marine Science and Application》、《Journal of Hydrodynamics》、《岩土工程学报》、《岩土力学》、《海洋工程》


    社会兼职

  • 教学课程

    研究生指导

  • 研究领域

    面向深海油气资源开采和海洋可再生能源开发工程需求,以海洋“流固土”耦合力学为主要研究方向,开展海床土体液化及海底灾害链、海工结构基础冲刷预测等海洋岩土力学理论,以及深海长输管道及水下生产系统、海洋平台及海上风机工程结构基础系统稳定性与智能运维技术研究。


    主要项目

    [1] 国家杰出青年科学基金项目“海洋土力学”(20192023)

    [2] 国家自然科学基金国际(地区)合作与交流项目(NSFC-RGC/内地-香港)“考虑时间及温度效应的深海管道与海洋有机质软土多场耦合作用机理研究”(20212024)

    [3] 中国海洋石油工程股份有限公司 工程咨询项目“海底管道流固土耦合物理模型试验研究”(20232025)

    [4] 中海油研究总院有限责任公司工程咨询项目深水钻孔原位测试数据处理和解释软件开发”(2021-2024)

    [5] 中国科学院战略性先导科技专项(B类)课题深海混输管线安全性与监控技术研究” (2016-2021)


  • 代表性论文

    [1] Cheng, J., Li, J., Gao, F.P, Yin, Z.Y. Long-term settlement of deepsea pipelines on a soft clayey seabed: Poro-elasto-viscoplastic modeling. Ocean Engineering, 2025, 332: 121414.
    https://doi.org/10.1016/j.oceaneng.2025.121414

    [2] Li, B., Qi, W.G., Gao, F.P., He, B., Yang, L.J. Experimental investigation of scour effects on regular and breaking wave loads on a monopile. Coastal Engineering, 2025, 197: 104696.
    https://doi.org/10.1016/j.coastaleng.2025.104696

    [3] Liu, J., Gao, F.P., Liu, X.M., Qi, W.G. Physical modeling of VIV hysteresis of an elastically mounted circular cylinder: Mass-damping effect. Ocean Engineering, 2025, 319: 120221.
    https://doi.org/10.1016/j.oceaneng.2024.120221

    [4] Qi, W.G., Zhao, P.Q., Yang, L.J., Zhou, M.Z., Gao, F.P., Jeng, D.S. Effect of apparent pore-fluid compressibility and degree of saturation with atmospheric pressure on wave-induced transient pore pressure response. Ocean Engineering, 2025, 340: 122171.
    https://doi.org/10.1016/j.oceaneng.2025.122171

    [5] Zhao, P.Q., Qi, W.G., Liu, B., Gao, F.P. A physics-based model for clear-water scour development around a pile foundation in clayey soils. Applied Ocean Research, 2025, 155: 104436.
    https://doi.org/10.1016/j.apor.2025.104436 

    [6] Song, Q.K., Qi, W.G, Wang, N., Gao, F.P. Multi-method data-driven prediction for maximum scour depth of pile foundations in clay. Ocean Engineering, 2025, 327: 121005.
    https://doi.org/10.1016/j.oceaneng.2025.121005

    [7] Li, B., Qi, W.G., Wang, Y.F., Gao, F.P., Wang, S.Y. Scour-induced unloading effects on lateral response of large–diameter monopiles in dense sand. Computers and Geotechnics,2024, 174: 106635.
    https://doi.org/10.1016/j.compgeo.2024.106635

    [8] Song, Q.Y., Liu, J., Gao, F.P. Very high cycle fatigue life of free-spanning subsea pipeline subjected to vortex-induced vibrations. Journal of Marine Science and Engineering, 2024, 12: 1556.
    https://doi.org/10.3390/jmse12091556

    [9] Wang, S.Y., Qi, W.G., Li, B., Wang, Z., Gao, F.P. Extrapolating time development curves of clear-water scour around piles: From empirical fitting to physics-based approach. Ocean Engineering, 2024, 306: 117963.
    https://doi.org/10.1016/j.oceaneng.2024.117963 

    [10] Wang, S.Y., Qi, W.G., Li, B., Wang, C., Gao, F.P. Tidal currents-induced scour development around pile foundations: Effects of flow velocity hydrograph. Coastal Engineering, 2024, 191: 104533.
    https://doi.org/10.1016/j.coastaleng.2024.104533

    [11] Li, C.F., Wang, Y.F., Yu, J.H., Qi, W.G., Gao, F.P. Sequential evolution of residual liquefaction in a silty seabed: Effect of wave-loading history. Journal of Marine Science and Engineering, 2024, 12: 750.
    https://doi.org/10.3390/jmse12050750

    [12] Li, C.F., Yu, J.H., Gao, F.P. Phase-lag effect on the instantaneously-liquefied seabed depth under progressive waves: Explicit approximations. Applied Ocean Research, 2024, 147: 103965.
    https://doi.org/10.1016/j.apor.2024.103965

    [13] Wang, S.Y., Qi, W.G., Gao, F.P., Li, B., He, B. Time development of clear-water scour around a pile foundation: Phenomenological theory of turbulence-based approach. Coastal Engineering, 2024, 190: 104511.
    https://doi.org/10.1016/j.coastaleng.2024.104511

    [14] Peng, Y., Yin, Z.Y., Gao, F.P. Micromechanical analysis of pipeline-soil interaction in unsaturated granular soil undergoing lateral ground movement. Computers and Geotechnics, 2024, 169: 106181.
    https://doi.org/10.1016/j.compgeo.2024.106181

    [15] Yu, J.H., Gao, F.P., Li, C.F. Response spectra for transient pore-pressure in a sandy seabed under random waves: Frequency-filtering effect. Ocean Engineering, 2023, 279: 114490.
    https://doi.org/10.1016/j.oceaneng.2023.114490

    [16] Yang, L.J., Qi, W.G., Li, Y.Z, Gao, F.P. Wave-current coupling effects on the variation modes of pore pressure response in a sandy seabed: Physical modeling and explicit approximations. Journal of Geophysical Research: Oceans, 128: e2022JC019158.
    https://doi.org/10.1029/2022JC019158

    [17] Liu, Y., Liu, J., Gao, F.P. Strouhal number for boundary shear flow past a circular cylinder in the subcritical flow regime. Ocean Engineering, 2023, 269: 113574.
    https://doi.org/10.1016/j.oceaneng.2022.113574

    [18] Shi, Y.M., Wang, N., Gao, F.P. Stochastic analysis on the lateral buckling of a HPHT pipeline considering the spatial variability of seabed. Ocean Engineering, 2023, 268: 113392.
    https://doi.org/10.1016/j.oceaneng.2022.113392

    [19] Yang, L.J., Gao, F.P.Li, C.F. Combined nonlinear wave and current induced instantaneously-liquefied soil depth in a non-cohesive seabed. Coastal Engineering, 2023, 179: 104229.
    https://doi.org/10.1016/j.coastaleng.2022.104229

    [20] Wang, N., Qi, W.G., Shi, Y.M., Gao, F.P. A slip-line field solution for the ultimate bearing capacity of a pipeline under oblique loading on a clayey seabed. International Journal of Offshore and Polar Engineering, 2022, 32(4): 473–479.
    https://doi.org/10.17736/ijope.2022.cl21

    [21] Li, B., Wang, Y.F., *Qi, W.G., Wang, S.Y., Gao, F.P. Lateral bearing capacity of a hybrid monopile: Combined effects of wing configuration and local scour. Journal of Marine Science and Engineering, 2022, 10: 1799.
    https://doi.org/10.3390/jmse10121799

    [22] Li, C.F., Wang, Y.F., Gao, F.P., Yang, L.J. Spatiotemporal evolution of excess pore pressures in a silty seabed under progressive waves during residual liquefaction. Applied Ocean Research, 2022, 129: 103401.
    https://doi.org/10.1016/j.apor.2022.103401

    [23] Gao, F.P., Yin, Z.Y. Instability and failure of subsea structures. Journal of Marine Science and Engineering, 2022, 10: 1001.
    https://doi.org/10.3390/jmse10081001

    [24] Li, C.F., Gao, F.P. Characterization of spatio-temporal distributions of wave-induced pore pressure in a non-cohesive seabed: Amplitude-attenuation and phase-lag. Ocean Engineering, 2022, 253: 111315.
    https://doi.org/10.1016/j.oceaneng.2022.111315

    [25] Wang, N., Qi, W.G., Gao, F.P. Predicting the instability trajectory of an obliquely loaded pipeline on a clayey seabed. Journal of Marine Science and Engineering, 2022, 10: 299.
    https://doi.org/10.3390/jmse10020299

    [26] Qi, W.G., Liu, J., Gao, F.P., Li, B., Chen, Q.G. Quantifying the spatiotemporal evolution of the turbulent horseshoe vortex in front of a vertical cylinder. Physics of Fluids, 2022, 34015110.
    https://doi.org/10.1063/5.0076648 

    [27] Liu J., Gao, F.P. Triggering mechanics for transverse vibrations of a circular cylinder in a shear flow: Wall-proximity effects. Journal of Fluids and Structures, 2022, 108: 103423.
    https://doi.org/10.1016/j.jfluidstructs.2021.103423

    [28] Zhou, M.Z., Qi, W.G., Jeng, D.S., Gao, F.P. A non-Darcy flow model for a non-cohesive seabed involving wave-induced instantaneous liquefaction. Ocean Engineering, 2021, 239: 109807.
    https://doi.org/10.1016/j.oceaneng.2021.109807

    [29] Liu, J., Gao, F.P. Evaluation for allowable span length of a submarine pipeline considering VIV hysteresis effect. International Journal of Offshore and Polar Engineering, 2021, 31(3): 325–332.
    https://doi.org/10.17736/ijope.2021.ts23

    [30] Shi, Y.M., Gao, F.P., Wang, N., Yin, Z.Y. Coupled flow-seepage-elastoplastic modeling for competition mechanism between lateral instability and tunnel erosion of a submarine pipeline. Journal of Marine Science and Engineering, 2021, 9(8): 889.
    https://doi.org/10.3390/jmse9080889

    [31] Li, C.F., Gao, F.P., Yang, L.J. Breaking-wave induced transient pore pressure in a sandy seabed: Flume modeling and observations. Journal of Marine Science and Engineering, 2021, 9(2): 160.
    https://doi.org/10.3390/jmse9020160

    [32] Zhang, P., Yin, Z.Y., Jin, Y.F., ChanT.H.T., Gao, F.P. Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms. Geoscience Frontiers, 2021, 12: 441-452.
    https://doi.org/10.1016/j.gsf.2020.02.014

    [33] Zhang, P., Yin, Z.Y., Zheng, Y.Y., Gao, F.P. A LSTM surrogate modelling approach for caisson foundations. Ocean Engineering, 2020, 204: 107263.
    https://doi.org/10.1016/j.oceaneng.2020.107263

    [34] Yang, J., Yin, Z.Y., Liu, X.F., Gao, F.P. Numerical analysis for the role of soil properties to the load transfer in clay foundation due to the traffic load of the metro tunnel. Transportation Geotechnics, 2020, 23: 100336.
    https://doi.org/10.1016/j.trgeo.2020.100336

    [35] Qi, W.G., Shi, Y.M., Gao, F.P. Uplift soil resistance to a shallowly-buried pipeline in the sandy seabed under waves: Poro-elastoplastic modeling. Applied Ocean Research, 2020, 95: 102024.
    https://doi.org/10.1016/j.apor.2019.102024

    [36] Qi, W.G., Li, C.F., Jeng, D.S., Gao, F.P., Liang, Z.D. Combined wave-current induced excess pore-pressure in a sandy seabed: Flume observations and comparisons with theoretical models. Coastal Engineering, 2019, 147: 89-98.
    https://doi.org/10.1016/j.coastaleng.2019.02.006

    [37] Shi, Y.M., Wang, N., Gao, F.P., Qi, W.G., Wang, J.Q. Physical modelling of the axial pipe-soil interaction for pipeline walking on a sloping sandy seabed. Ocean Engineering, 2019, 178: 20-30.
    https://doi.org/10.1016/j.oceaneng.2019.02.059

    [38] Qi, W.G., Li, Y.X., Xu, K. and Gao, F.P. Physical modelling of local scour at twin piles under combined waves and current. Coastal Engineering, 2019, 143: 63-75.
    https://doi.org/10.1016/j.coastaleng.2018.10.009

    [39] Qi, W.G., Gao, F.P. Wave induced instantaneously-liquefied soil depth in a non-cohesive seabed. Ocean Engineering, 2018, 153: 412-423.
    https://doi.org/10.1016/j.oceaneng.2018.01.107

    [40] Yang, B., Gao, F.P, Jeng, D.S. Failure mode and dynamic response of a double-sided slope with high water content of soil. Journal of Mountain Science, 2018, 15(4): 859-870.
    https://doi.org/10.1007/s11629-017-4616-4

    [41] Shi, Y.M., Gao, F.P. Lateral instability and tunnel erosion of a submarine pipeline: Competition mechanism. Bulletin of Engineering Geology and the Environment, 2018, 77: 1069-1080.

    [42] Gao, F.P. Flow-pipe-soil coupling mechanisms and predictions for submarine pipeline instability. Journal of Hydrodynamics, 2017, 29(5): 763-773.

    [43] Li, L., Li, J., Huang, J., Gao, F.P. Bearing capacity of spudcan foundations in a spatially varying clayey seabed. Ocean Engineering, 2017, 143: 97-105.
    http://dx.doi.org/10.1016/j.oceaneng.2017.05.026

    [44] Gao, F.P., Wang, N., Li, J. H., Han, X.T. Pipe-soil interaction model for current-induced pipeline instability on a sloping sandy seabed. Canadian Geotechnical Journal, 2016, 53(11): 1822-1830.

    [45] Qi, W.G., Gao, F.P., Randolph, M.F., Lehane, B.M. Scour effects on p–y curves for shallowly embedded piles in sand. Géotechnique, 2016, 66(8): 648-660.
    http://dx.doi.org/10.1680/jgeot.15.P.157

    [46] Li, Y.X., Qi, W.G., Gao, F.P. Physical modelling of pile-group effect on the local scour in submarine environments. Procedia Engineering, 2016, 166: 212-220.

    [47] Gao, F.P., Li, J.H., Qi, W.G., Hu, C. On the instability of offshore foundations: theory and mechanism. Science China-Physics, Mechanics & Astronomy, 2015, 58 (12): 124701.

    [48] Gao, F.P., Wang, N., Zhao, B. A general slip-line field solution for the ultimate bearing capacity of a pipeline on drained soils. Ocean Engineering, 2015, 104: 405-413. (SCI/EI)
    http://dx.doi.org/10.1016/j.oceaneng.2015.05.032

    [49] Gao, F.P., Cassidy, M. Editorial: Special issue on offshore structure-soil interaction. Theoretical and Applied Mechanics Letters, 2015, 5: 63.
    http://dx.doi.org/10.1016/j.taml.2015.03.003

    [50] Hu, C., Gao, F.P. Elasto-plasticity and pore-pressure coupled analysis on the pullout behaviors of a plate anchor. Theoretical and Applied Mechanics Letters, 2015, 5: 89-92.
    http://dx.doi.org/10.1016/j.taml.2015.02.004

    [51] Qi, W G, Gao, F.P. A modified criterion for wave-induced momentary liquefaction of sandy seabed. Theoretical and Applied Mechanics Letters, 2015, 5: 20-23. 
    http://dx.doi.org/10.1016/j.taml.2015.01.004 

    [52] Qi, W.G., Gao, F.P. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Science China, Technological Sciences, 2014, 57(5): 1030-1039.

    [53] Qi, W.G., Gao, F.P. Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coastal Engineering, 2014, 83: 72-81.
    http://dx.doi.org/10.1016/j.coastaleng.2013.10.007

    [54] Zang, Z.P., Gao, F.P. Steady current induced vibration of near-bed piggyback pipelines: Configuration effects on VIV suppression. Applied Ocean Research, 2014, 46: 62-69.
    http://dx.doi.org/10.1016/j.apor.2014.02.004

    [55] Gao, F.P.Wang, N., Zhao, B. Ultimate bearing capacity of a pipeline on clayey soils: Slip-line field solution and FEM simulation. Ocean Engineering, 2013, 73: 159-167.
    http://dx.doi.org/10.1016/j.oceaneng.2013.09.003

    [56] Zang, Z.P., Gao, F.P., Cui, J.S. Physical modeling and swirling strength analysis of vortex shedding from near-bed piggyback pipelines. Applied Ocean Research, 2013, 40: 5059.
    http://dx.doi.org/10.1016/j.apor.2013.01.001

    [57] Zhang, Y., Jeng, D.-S., Gao, F.P., Zhang, J.-S. An analytical solution for response of a porous seabed to combined wave and current loading. Ocean Engineering, 2013, 57: 240–247.
    http://dx.doi.org/10.1016/j.oceaneng.2012.09.001

    [58] Gao, F.P., Zhao, B. Slip-line field solution for ultimate bearing capacity of a pipeline on clayey soils. Theoretical & Applied Mechanics Letters, 2012, 2: 051004.
    http://doi.org/10.1063/2.1205104

    [59] Gao, F.P., Han, X.T., Cao, J., Sha, Y., Cui, J.S. Submarine pipeline lateral instability on a sloping sandy seabed. Ocean Engineering, 2012, 50: 4452.
    http://dx.doi.org/10.1016/j.oceaneng.2012.05.012

    [60] Gao, F.P., Han, X.T., Yan, S.M. A numerical model for ultimate soil resistance to an untrenched pipeline under ocean currents. China Ocean Engineering, 2012, 26(2): 185194.
    https://doi.org/10.1007/s13344-012-0014-4

    [61] Gao, F.P., Yan, S.M., Yang, B., Luo, C.C. Steady flow-induced instability of a partially embedded pipeline: Pipe–soil interaction mechanism. Ocean Engineering, 2011, 38: 934942.
    http://doi.org/10.1016/j.oceaneng.2010.09.006

    [62] Li, X.J., Gao, F.P., Yang, B., Zang, J. Wave-induced pore pressure responses and soil liquefaction around pile foundation. International Journal of Offshore and Polar Engineering, 2011, 21(3): 233239.

    [63] Hong Y.S., Mazzolani F. M., Gao, F.P. (2010): ISAB-2010 Foreword. Procedia Engineering, 2010, 4:12.
    http://doi.org/10.1016/j.proeng.2010.08.002

    [64] Yan, W.J., Gao, F.P. Numerical analysis of interfacial shear degradation effects on axial uplift bearing capacity of a tension pile. Procedia Engineering, 2010, 4: 273281.
    http://doi.org/10.1016/j.proeng.2010.08.031

    [65] Gao, F.P., Luo, C.C. Flow-pipe-seepage coupling analysis on spanning initiation of a partially-embedded pipeline. Journal of Hydrodynamics, 2010, 22(4): 478487.
    http://doi.org/10.1016/S1001-6058(09)60079-2

    [66] Zhao, C.G., Liu, Y., Gao F.P. Work and energy equations and the principle of generalized effective stress for unsaturated soils. International Journal for Numerical and Analytical Method in Geomechanics, 2010; 34: 920–936.
    http://doi.org/10.1002/nag.839

    [67] Yang, B., Gao, F. P., Li, D.H., Wu, Y. X. Physical modelling and parametric study on two-degree-of-freedom VIV of a cylinder near rigid wall. China Ocean Engineering, 2009, 23(1): 119132.

    [68] Yang, B., Gao, F. P., Jeng, D.S., Wu, Y. X. Experimental study of vortex-induced vibrations of a cylinder near a rigid plane boundary in steady flow. Acta Mechanica Sinica, 2009, 25: 5163.
    http://doi.org/10.1007/s10409-008-0221-7

    [69] Yang, B., Gao, F. P., Wu, Y. X. Flow-induced vibrations of a cylinder with two degrees of freedom near rigid plane boundary. International Journal of Offshore and Polar Engineering, 2008, 18 (4): 302307.

    [70] Yang, B., Gao, F. P., Jeng, D.S., Wu, Y. X. Experimental study of vortex-induced vibrations of a pipeline near an erodible sandy seabed. Ocean Engineering, 2008, 35(3-4): 301309.

    [71] Gao, F. P., Yan, S.M., Yang, B., Wu, Y. X. Ocean currents-induced pipeline lateral stability. Journal of Engineering Mechanics, ASCE, 133(10): 10861092.
    https://doi.org/10.1061/(ASCE)0733-9399(2007)133:10(1086)

    [72] Jeng, D.S., Seymour, B., Gao, F.P., Wu, Y.X. Ocean waves propagating over a porous seabed: residual and oscillatory mechanisms. Science in China, Series E Technological Sciences, 2007, 50(1): 8189.
    https://doi.org/10.1007/s11431-007-2018-5

    [73] Gao, F. P., Yang, B., Wu, Y. X., Yan, S.M. Steady currents induced seabed scour around a vibrating pipeline. Applied Ocean Research, 2006, 28(5): 291298.
    https://doi.org/10.1016/j.apor.2007.01.004 

    [74] Gao, F. P., Jeng, D. S., Wu, Y. X. An improved analysis method for wave-induced pipeline stability on sandy seabed. Journal of Transportation Engineering, ASCE, 2006, 132(7): 590596.
    https://doi.org/10.1061/(ASCE)0733-947X(2006)132:7(590) 

    [75] Zhao, C.G., Dong, J., Gao, F.P. An analytical solution for three-dimensional diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits. Acta Mechanica Solida Sinica, 2006, 19(2):141151.
    https://doi.org/10.1007/s10338-006-0617-5

    [76] Yang, B., Gao, F. P., Wu, Y.X., Li, D.H. Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents. China Ocean Engineering, 2006, 20(1):113121.

    [77] Zhao, C.G., Dong, J., Gao, F.P., Jeng, D.S. Seismic responses of a hemispherical alluvial valley subjected to SV waves: A three-dimensional analytical approximation. Acta Mechanica Sinica, 22(6): 547557.
    https://doi.org/10.1007/s10409-006-0039-0

    [78] Gao, F.P., Wu, Y.X. (2006): Non-linear wave induced transient response of soil around a trenched pipeline. Ocean Engineering, 33: 311330.
    https://doi.org/10.1016/j.oceaneng.2005.05.008

    [79] Zhao C.G., Yang Z.M., Gao F.P. and Zhang Y.N. Influential factors of loess liquefaction and pore pressure development. Acta Mechanica Sinica, 2005, 21(2): 129132.
    https://doi.org/10.1007/s10409-005-0021-2

    [80] Gao, F.P., Jeng, D.S., Sekiguchi, H. Numerical study on the interaction between non-linear wave, buried pipeline and non-homogenous porous seabed. Computers and Geotechnics, 2003, 30 (6): 535547.
    https://doi.org/10.1016/S0266-352X(03)00053-3 

    [81] Gao, F.P., Gu, X.Y., Jeng, D.S. Physical modeling of untrenched submarine pipeline instability. Ocean Engineering, 2003, 30 (10): 12831304.
    https://doi.org/10.1016/S0029-8018(02)00108-7

    [82] Gao, F. P., Gu, X. Y., Jeng, D. S., Teo H.T. An experimental study for wave-induced instability of pipelines: The breakout of pipelines. Applied Ocean Research, 2002, 24(2): 8390.

    [83] Gu, X.Y., Gao, F.P., Pu, Q. Wave-soil-pipe coupling effect upon submarine pipeline on-bottom stability. Acta Mechanica Sinica, 2001, 17(1): 8696.

    [84] Pu, Q., Li, K., Gao F.P. Scour of the seabed under a pipeline in oscillating Flow. China Ocean Engineering, 2001, 15(1): 129137.

    [85] 高福平. 深海工程力学专题序. 力学与实践202244(5): 1003-1004 .

    [86] 刘剑涛,师玉敏,王俊勤,朱友生,李畅飞,漆文刚,高福平. 南海北部深水区表层沉积物工程性质的统计特征分析. 海洋工程202139(6): 90-98.

    [87] 刘俊,高福平. 近壁面柱体涡激振动的迟滞效应. 力学学报201951(6): 1630-1640. (EI)

    [88] 师玉敏,高福平. 软黏土海床条件下的管道侧向失稳模型. 中国海洋大学学报, 2017, 47(10): 129-135.

    [89] 漆文刚,高福平. 冲刷对海上风力机单桩基础水平承载特性的影响. 中国科学: 物理学, 力学, 天文学, 2016, 46(12): 124710. (EI)

    [90] 姜海洋,高福平,臧志鹏. 钢悬链线立管触地段的结构循环应变响应实验研究. 海洋工程, 2015, 33(4): 11-18.

    [91] 崔金声,高福平,韩希霆,臧志鹏. 海流作用下子母管结构的横向涡激振动. 海洋工程, 2012, 30(1):18-24.

    [92] 杨兵,高福平.单向流作用下近壁面圆柱的流向振动. 水动力学研究与进展(A辑) 201025(1):119-125.

    [93] , *高福平, 吴应湘. 单向海流载荷下海底管道局部冲刷试验研究. 工程力学, 2008, 25(3): 206-210.

    [94] Jeng, D.S., Seymour, B., 高福平, 吴应湘. 波浪载荷下海床土体孔隙水压的瞬态与累积响应机理. 中国科学(E)200737(1): 91-98.

    [95] 赵成刚, 王磊, 高福平. 圆弧形沉积场地对平面瑞利波散射的解析分析. 力学学报200739(3): 365-373.

    [96] 杨兵,高福平,吴应湘: 近壁管道在单向水流作用下的涡激振动实验研究. 中国海上油气200618(1): 52-57.

    [97] 高福平,顾小芸,吴应湘.考虑--耦合作用的海底管道在位稳定性分析方法. 海洋工程200523(1): 6-12.

    [98] 高福平,顾小芸,浦群. 水动力作用下管道稳定性的试验研究. 海洋工程200119(2): 61-65.

    [99] 高福平,顾小芸,浦群. 海底管道失稳过程的模型试验研究. 岩土工程学报200022(3)304-308.

    [100] 赵成刚,高福平. 波从单相介质向两相饱和多孔介质入射时在交界面上的反射与透射. 地震工程与工程振动199818(1)131-139.


    代表性著作

    主要专利成果

    其他成果

  • 荣誉奖项

    [1] 国家杰出青年基金获得者

    [2] 国务院政府特殊津贴获得者

    [3] 入选国家百千万人才工程

    [4] 入选全球前2%顶尖科学家榜单

    [5] 入选Elsevier中国高被引学者榜单

    [6] 入选中国科学院青年创新促进会(优秀会员)

    [7] 入选北京市科技新星计划(A类)

    [8] 中国力学学会“自然科学奖”二等奖

    [9] 中国力学学会“青年科技奖”

    [10] 中国科学院“卢嘉锡青年人才奖”


版权所有@清华大学深圳国际研究生院 京ICP备15006448号 京公网安备 110402430053 号